

Mathematics: analysis and approaches Standard level Paper 2

31 October 2023

Zone A afternoon	Zone B	afternoon	Zone C	afternoon	
------------------	--------	-----------	--------	-----------	--

Candidate session number

1 hour 30 minutes

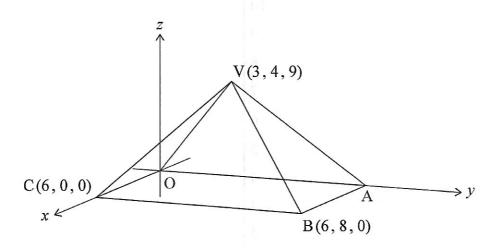
Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all questions. Answers must be written within the answer boxes provided.
- Section B: answer all questions in the answer booklet provided. Fill in your session number on the front of the answer booklet, and attach it to this examination paper and your cover sheet using the tag provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the mathematics: analysis and approaches formula booklet is required for this paper.
- The maximum mark for this examination paper is [80 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer all questions. Answers must be written within the answer boxes provided. Working may be


con	tinued below the lines, if necessary.	
1.	[Maximum mark: 7]	
	Consider the function defined by $f(x) = x^2 - 8x$. The graph of f passes through the point $A(3, -15)$.	
	(a) (i) Find the gradient of the tangent to the graph of f at the point A .	
	(ii) Hence, write down the gradient of the normal to the graph of f at point A .	[3
	(b) Write down the equation of the normal to the graph of f at point A .	. [1
	The normal to the graph of f at point ${\bf A}$ intersects the graph of f again at a second point ${\bf B}$.	
	(c) Find the coordinates of B .	[3

€		

2. [Maximum mark: 6]

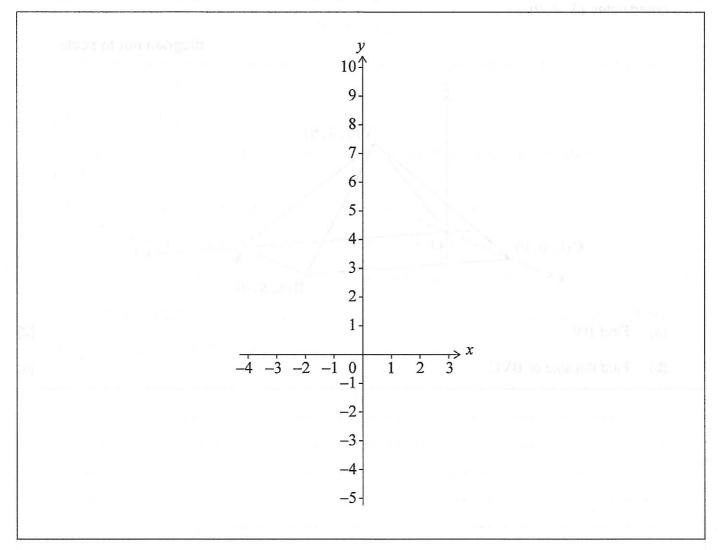
The following diagram shows a pyramid with vertex V and rectangular base OABC.

Point B has coordinates (6, 8, 0), point C has coordinates (6, 0, 0) and point V has coordinates (3, 4, 9).

diagram not to scale

(a)	Find BV.	[2
(~/	TING DY.	L—

(b) Find the size of $B\hat{V}C$. [4]


 		4.1
 		The function gas defined by g(u) of a two 2.

 gitterina tribi	et 7. by a negzental s	(b). The group of our attempt from a graphy factor & followed by a verifical translation of
 	samu o te	factor 4, tellowed by a vertical translation
 		(abed frepretty errors sammer andread

3. [Maximum mark: 5]

Consider the function $f(x) = e^x - 3x - 4$.

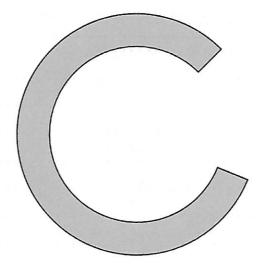
(a) On the following axes, sketch the graph of f for $-4 \le x \le 3$.

[3]

The function g is defined by $g(x) = e^{2x} - 6x - 7$.

(b) The graph of g is obtained from the graph of f by a horizontal stretch with scale factor k, followed by a vertical translation of c units.

Find the value of k and the value of c.

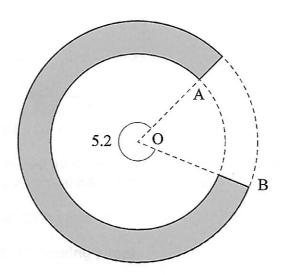

[2]

(This question continues on the following page)

	-3-	0023
stion 3 continued)		
	10" restails to saying entire cool wi	ел в рајвизав е ульотор А
.,		

4. [Maximum mark: 7]

A company is designing a new logo in the shape of a letter "C".


The letter "C" is formed between two circles with centre O.

The point A lies on the circumference of the inner circle with radius $r \, \mathrm{cm}$, where r < 10.

The point B lies on the circumference of the outer circle with radius $10\,\mbox{cm}\,.$

The reflex angle ${\rm A\hat{O}B}$ is 5.2 radians. The letter "C" is shown by the shaded area in the following diagram.

diagram not to scale

(This question continues on the following page)

uesti	on 4 co	ontinued)		
(a)) Sho	ow that the area of the "C" is given by $260 - 2.6r^2$.		
Th	ne area	of the "C" is $64\mathrm{cm}^2$.		
(b)) (i)	Find the value of r .		
	(ii)	Find the perimeter of the "C".		
		nce that the particle devels in the list of schools.	(b) Find the total tilsta	

[2]

5.	[Maximum	mark: 51	
J.	Maxillium	main. J	

A particle moves along a straight line. Its displacement, s metres, from a fixed point O after time t seconds is given by $s(t) = 4.3 \sin(\sqrt{3t+5})$, where $0 \le t \le 10$.

The particle first comes to rest after q seconds.

(a)	Find the value of q .	
()	This are taken or q.	

(a)	Find the total dis	tance that the par	ticle travels in the	e first q seconds	•	Į.

***************************************	*********

6.	FR A:		
h	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	marv	-
U.	[Maximum	main.	U

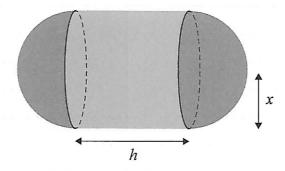
The following table shows the probability distribution of a discrete random variable X, where a, $k \in \mathbb{R}^+$.

x	1	2	3	4
P(X=x)	nn k s 10 1	k^2	a a	k^3

Given that E(X) = 2.3, find the value of a.

······································

По чакава обуче одности объекты по пределения по пределени
(a) Show that the total surface area. Now, of the solid is given by A = -1 + 4xr.
(b) (d) Find an expression for $\frac{c_0}{dt}$ and $\frac{c_0}{dt}$


Do not write solutions on this page.

Section B

Answer all questions in the answer booklet provided. Please start each question on a new page.

7. [Maximum mark: 14]

The solid shown in the following diagram is comprised of a cylinder and two hemispheres. The cylinder has height $h\,\mathrm{cm}$ and radius $x\,\mathrm{cm}$. The hemispheres fit exactly onto either end of the cylinder.

The volume of the cylinder is $45 \, \mathrm{cm}^3$.

(a) Show that the total surface area, $S \, \text{cm}^2$, of the solid is given by $S = \frac{90}{x} + 4\pi x^2$. [3]

The total surface area of the solid has a local maximum or a local minimum value when x = a.

- (b) (i) Find an expression for $\frac{dS}{dx}$.
 - (ii) Hence, find the **exact** value of a.
- (c) (i) Find an expression for $\frac{d^2S}{dx^2}$.
 - (ii) Use the second derivative of S to justify that S is a minimum when x = a.
 - (iii) Find the minimum surface area of the solid.

[6]

[5]

Do not write solutions on this page.

8. [Maximum mark: 15]

Give your answers to parts (a)(ii), (c)(i) and (d) correct to two decimal places.

Daniela and Sorin have each recently received some money. Daniela won a cash prize and Sorin received an inheritance.

Daniela had two options to choose from to receive her winnings. In both options she receives a payment on the first day of each month for three years.

Option A Each payment is \$5500.

Option B The first payment is \$2000. In each month which follows, the payment is 6% more than the previous month.

- (a) Find the total amount Daniela would receive if she chooses
 - (i) Option A;
 - (ii) Option B.

[5]

Sorin received an inheritance of $\$120\,000$. Sorin invested his inheritance in an account that pays a nominal annual interest rate of 4% per annum, compounded monthly. The interest is added on the last day of each month.

(b) Write down an expression for the value of Sorin's investment after n years.

[1]

Daniela chose Option B and received her first payment on 1st January 2023. Sorin invested his inheritance on the same day.

- (c) (i) Find the **total** value of Daniela's winnings and Sorin's investment on the last day of the sixth month.
 - (ii) Find the minimum number of complete months before the total value of Daniela's winnings and Sorin's investment is at least \$250 000.

[6]

At the end of the three years, Daniela invested $$40\,000$ for a further six years in a second account that pays a nominal interest rate of r% per annum compounded quarterly.

(d) Find the value of r if this investment grows to \$53 000 after six years.

[3]

Do not write solutions on this page.

9. [Maximum mark: 16]

A farmer is growing a field of wheat plants. The height, H cm, of each plant can be modelled by a normal distribution with mean μ and standard deviation σ .

It is known that P(H < 94.6) = 0.288 and P(H > 98.1) = 0.434.

- (a) Find the probability that the height of a randomly selected plant is between $94.6\,\mathrm{cm}$ and $98.1\,\mathrm{cm}$.
- (b) Find the value of μ and the value of σ .

The farmer measures 100 randomly selected plants. Any plant with a height greater than $98.1\,\mathrm{cm}$ is considered ready to harvest. Heights of plants are independent of each other.

- (c) (i) Find the probability that exactly 34 plants are ready to harvest.
 - (ii) Given that fewer than 49 plants are ready to harvest, find the probability that exactly 34 plants are ready to harvest.

In another field, the farmer is growing the same variety of wheat, but is using a different fertilizer. The heights of these plants, $F\mathrm{cm}$, are normally distributed with mean 98.6 and standard deviation d. The farmer finds the interquartile range to be $4.82\,\mathrm{cm}$.

(d) Find the value of d.

[3]

[6]

[2]

[5]